p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.24D4, C4○D4⋊1C4, (C22×C8)⋊4C2, D4.5(C2×C4), C4.49(C2×D4), Q8.5(C2×C4), C4○(D4⋊C4), C4○(Q8⋊C4), C2.1(C4○D8), (C2×C4).145D4, C4.3(C22×C4), D4⋊C4⋊20C2, C42⋊C2⋊2C2, Q8⋊C4⋊20C2, C4⋊C4.43C22, (C2×C8).59C22, (C2×C4).61C23, C22.43(C2×D4), C4.33(C22⋊C4), (C2×D4).47C22, (C2×Q8).41C22, C22.3(C22⋊C4), (C22×C4).109C22, (C2×C4).45(C2×C4), (C2×C4○D4).4C2, (C2×C4)○(D4⋊C4), (C2×C4)○(Q8⋊C4), C2.19(C2×C22⋊C4), SmallGroup(64,97)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.24D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=c, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bcd3 >
Subgroups: 129 in 79 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, D4⋊C4, Q8⋊C4, C42⋊C2, C22×C8, C2×C4○D4, C23.24D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C4○D8, C23.24D4
Character table of C23.24D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | 1 | -1 | -i | i | i | i | i | -i | -i | -i | i | i | -i | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -1 | 1 | i | -i | -i | i | i | -i | -i | -i | i | i | -i | linear of order 4 |
ρ11 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -1 | 1 | i | i | -i | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | 1 | -1 | -i | -i | i | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | 1 | -1 | i | i | -i | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -1 | 1 | -i | -i | i | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -1 | 1 | -i | i | i | -i | -i | i | i | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | 1 | -1 | i | -i | -i | -i | -i | i | i | i | -i | -i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | -√-2 | √2 | -√2 | √2 | √-2 | √-2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √2 | -√2 | -√-2 | √-2 | √-2 | -√2 | √2 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√-2 | -√2 | √2 | -√2 | √-2 | √-2 | complex lifted from C4○D8 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√2 | √2 | -√-2 | √-2 | √-2 | √2 | -√2 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | √-2 | -√2 | √2 | -√2 | -√-2 | -√-2 | complex lifted from C4○D8 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√2 | √2 | √-2 | -√-2 | -√-2 | √2 | -√2 | complex lifted from C4○D8 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | √-2 | √2 | -√2 | √2 | -√-2 | -√-2 | complex lifted from C4○D8 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √2 | -√2 | √-2 | -√-2 | -√-2 | -√2 | √2 | complex lifted from C4○D8 |
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 32 25 8)(2 7 26 31)(3 30 27 6)(4 5 28 29)(9 14 20 17)(10 24 21 13)(11 12 22 23)(15 16 18 19)
G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32,25,8)(2,7,26,31)(3,30,27,6)(4,5,28,29)(9,14,20,17)(10,24,21,13)(11,12,22,23)(15,16,18,19)>;
G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32,25,8)(2,7,26,31)(3,30,27,6)(4,5,28,29)(9,14,20,17)(10,24,21,13)(11,12,22,23)(15,16,18,19) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,32,25,8),(2,7,26,31),(3,30,27,6),(4,5,28,29),(9,14,20,17),(10,24,21,13),(11,12,22,23),(15,16,18,19)]])
C23.24D4 is a maximal subgroup of
Q8.C42 D4.3C42 2+ 1+4⋊4C4 M4(2).42D4 M4(2).44D4 M4(2).24D4 C42.428D4 C42.107D4 C22⋊C4.7D4 C42.9D4 C24.98D4 2+ 1+4⋊5C4 2- 1+4⋊4C4 C4×C4○D8 C42.275C23 C42.276C23 C24.103D4 C4○D4⋊D4 D4.(C2×D4) (C2×Q8)⋊16D4 Q8.(C2×D4) C42.443D4 C42.14C23 C42.15C23 C42.16C23 C42.17C23 C42.447D4 C42.22C23 C42.23C23 C24.115D4 (C2×D4).303D4 (C2×D4).304D4 C42.355D4 C42.239D4 C42.366C23 C42.367C23 C42.461C23 C42.462C23 C42.465C23 C42.466C23 C42.467C23 C42.468C23 C42.469C23 C42.470C23 C42.42C23 C42.44C23 C42.46C23 C42.48C23 C42.50C23 C42.52C23 C42.54C23 C42.56C23 C4.A4⋊C4
C4○D4p⋊C4: C42.383D4 C4.(C2×D12) C23.28D12 C4○D20⋊10C4 C23.23D20 C4○D20⋊C4 C4.(C2×D28) C23.23D28 ...
C4p.(C2×D4): C24.144D4 C24.110D4 M4(2)⋊16D4 M4(2)⋊17D4 D4⋊2S3⋊C4 C4⋊C4.150D6 C4○D4⋊4Dic3 D4⋊2D5⋊C4 ...
C23.24D4 is a maximal quotient of
C42.455D4 C42.373D4 C42.374D4 C42.305D4 C42.375D4 C24.53D4 C24.59D4 C42.63D4 C42.410D4 C42.411D4 C42.412D4 C42.80D4 C42.81D4 C42.417D4 C42.418D4 C24.132D4 C4×D4⋊C4 C4×Q8⋊C4 C24.65D4 C42.100D4 C42.101D4 C24.69D4 C24.74D4 C42.123D4 C42.437D4 C4○D20⋊C4
C23.D4p: C23.23D8 C23.28D12 C23.23D20 C23.23D28 ...
C4.(C2×D4p): C42.409D4 C4.(C2×D12) C4○D20⋊10C4 C4.(C2×D28) ...
(C2×C4p).D4: C24.135D4 C42.433D4 C4○D4⋊4Dic3 C20.(C2×D4) C28.(C2×D4) ...
C4⋊C4.D2p: C24.73D4 C42.119D4 D4⋊2S3⋊C4 C4⋊C4.150D6 D4⋊2D5⋊C4 Q8⋊2D5⋊C4 D4⋊2D7⋊C4 Q8⋊2D7⋊C4 ...
Matrix representation of C23.24D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 13 | 0 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 5 | 5 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,13,0,0,4,0],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[0,1,0,0,1,0,0,0,0,0,12,12,0,0,5,12],[0,16,0,0,1,0,0,0,0,0,12,5,0,0,5,5] >;
C23.24D4 in GAP, Magma, Sage, TeX
C_2^3._{24}D_4
% in TeX
G:=Group("C2^3.24D4");
// GroupNames label
G:=SmallGroup(64,97);
// by ID
G=gap.SmallGroup(64,97);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,158,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=c,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^3>;
// generators/relations
Export